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Trajectory of the wave field centroid

A. G. Litvak, V. A. Mironov, and E. M. Sher
Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod 603600, Russia

~Received 30 September 1996!

The behavior of a wave-field centroid with spatial dynamics described by the Schro¨dinger equation is
investigated analytically and numerically. The consideration was made for the case of media with inertia of the
nonlinear response. The peculiarities of the dynamics of wave-beam self-action in the media with focusing and
defocusing nonlinearities were analyzed. Within a paraxial optics approximation, the behavior of the centroid
trajectory was studied qualitatively. The numerical calculations of the peculiarities of a wave-beam self-action
dynamics under the conditions of nonrectilinear motion of the centroid were carried out.
@S1063-651X~97!02805-5#

PACS number~s!: 52.35.Mw, 52.40.Nk
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INTRODUCTION

The study of the dynamics of self-action for electroma
netic waves and spatially localized pulses is usually
stricted to the consideration of axially symmetric field dist
butions. One major reason for such an approach
connected, in the long run, to the rectilinearity of the traje
tory of the wave field centroid. However, only in the case
the nonlinear Schro¨dinger equation with a local nonlinearit
can one provide a strict proof that nonlinearity does
change the linear trajectory of the centroid~the first momen-
tum of the wave-field intensity!. Because of this, the basi
features of self-action dynamics are determined only by
behavior of the efficient pulse distribution width~second mo-
mentum of the intensity! @1#. One cannot make such a ge
eral conclusion even for media with a nonlocal depende
of the potential on the field amplitude in the Schro¨dinger
equation and all the more for media with inertia of the no
linear response. Recent studies@2,3# on the self-action of a
spatially limited pulse in plasmas under excitation of a wa
field demonstrated the unstable motion of the centroid, ca
‘‘hose-modulation instability’’@2#. One can expect that th
unstable motion of the centroid is inherent for the dynam
of the self-action of wave beams in any medium with no
linear relaxation.

This work presents analytical and numerical consid
ations of the behavior of the intensity center and dynamic
the wave-field structure in the medium, with a nonlinear
that is described by a relaxation equation. Peculiarities of
processes considered have been studied for the cases o
focusing and defocusing nonlinearities. The approach de
oped to determine the self-consistent trajectory of the c
troid and application of the averaging method allowed one
find different peculiarities in the dynamics of hos
modulation instability too.

I. PROBLEM FORMULATION: BASIC EQUATIONS

Let us consider the trajectory of the wave-beam centro
the spatial evolution of which, as it propagates alongz, is
governed by the Schro¨dinger equation
551063-651X/97/55~6!/7441~8!/$10.00
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]C

]z
1D'C2nC50, ~1!

wheren is the perturbation of the medium refraction inde
caused by the effect of the field. This trajectory is describ
by the well-known equation

]2RW

]z2
52E uCu2¹'ndrWY E uCu2drW,

RW 5E rW'uCu2drWY E uCu2drW. ~2!

Usually a special case of a medium with local nonlinearity
considered. Whenn5F(uCu), the centroid of the wave field
C moves along the straight line determined by the condit
at the boundary of the nonlinear medium (z50). One cannot
make such a univalent conclusion for the case of a med
with inertia of the nonlinear response whenn depends on the
field distribution at previous time moments.

Moreover, one can show a possible mechanism of
centroid motion instability. If in the field-induced perturba
tion of the refraction index an asymmetric mode can ex
along with the initial symmetric mode~pump wave!, then the
right-hand side~force! of the motion equation~2! proves to
be nonzero. Acceleration of the centroid motion, in turn, c
lead to amplification of the nonsymmetric part of the fie
Note that this instability mechanism is possible in a stea
state medium with nonlocal nonlinearity too.

Let us consider the dynamics of the wave-beam centr
behavior in a nonstationary medium. For this, the followi
expression describing relaxation of the nonlinear respons
used:

]n

]t
1n5auCu2. ~3!

This simplest case of Kerr-type nonlinearity relaxation ha
number of advantages at the first stage of the constructio
a self-consistent scenario. It is local relative to all spa
variables and in the steady-state case it corresponds to c
nonlinearity. It allows the consideration of both nonlinea
ties: the focusing (a521) and defocusing (a51) types.
7441 © 1997 The American Physical Society
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Section IV describes also the centroid trajectory in a m
dium with a nonlinearity relaxation determined by the osc
lator equation

]2n

]t2
1n52uCu2 . ~4!

Then the set of equations~1! and~4! describes the short lase
pulse self-action in plasma due to a wake-field excitation

II. GENERALIZATION OF PARAXIAL OPTICS
APPROXIMATION

For a qualitative analysis of wave-beam variations it
convenient to use new variablesz, t, and

jW5rW2RW ~z,t !. ~5!

As a result, the material equation~3! will be rewritten as

]n

]t
2RW t•

]n

]j
1n5auCu2 ~6!

and the equation for the centroid motion will stay the sa
since only the integration variable in Eq.~2! was changed
(rW→jW ). The Schro¨dinger equation in these variables,

i S ]C

]z
2RW z•

]C

]jW
D 1DC2nC50, ~7!

by means of linear phase correction

C5CHexp~ iRW z•jW !, ~8!

is transformed as

i S ]C

]z
1RW z•

]C

]jW
D 1DC2~n1RW zz•jW !C50, ~9!

where the subscriptH is omitted.
This equation describes the evolution of the wave beam

it propagates along a slightly curved trajectory. The effect
potentialn1RW zz•jW is symmetric within the paraxial optic
approximation, as is easily seen when using the equation
the trajectory~2!. Having neglected higher-order aberration
it is natural to assume thatuCu2 stays an even function o
j. The deviation of the trajectory from the straight line a
the arising of instability are connected, within this appro
mation, with the asymmetric part of the refraction index p
turbation. Therefore, we will representn as a sum of sym-
metric S and asymmetricN partsn5S1N. Finally, within
the approximation under consideration we obtain the follo
ing self-consistent system of equations, which is conven
for analysis:

]S

]t
1S5auCu21RW t•

]N

]j
, ~10!

]N

]t
1N5RW t•

]S

]jW
, ~11!
-
-

e

as
e

for
,

-
-

-
nt

]2RW

]z2
52E ]N

]jW
uCu2djWY E uCu2djW , ~12!

i S ]C

]z
1RW z

]C

]jW
D 1DC2SC50. ~13!

Hence one can see a rather strong effect of the symm
part of the refraction index perturbation and weak reve
influence of the asymmetric part of the refraction index
the wave-beam self-action. This is seen with extraordin
clarity within the paraxial optics approximation. Having a
proximated the symmetric part of the refraction index with
parabolaS5S01S2j

2/2 and the asymmetric part with th
expressionN5N0j linear relative toj, it is easy to obtain,
for Gaussian wave beam

C5
AP
a
expS 2

j2

2a2D1 iFj2, ~14!

the following equation that generalizes equations of
paraxial optics for the case of a non-rectilinear plane traj
tory:

]2a

] l 2
5

1

a3
1S2a,

]S2
]t

1S25a
P

a4
; ~15!

]2X

]z2
5N0 ,

]N0

]t
1N05XtS2 , ~16!

where within the approximation under cosideration we ha
for length l ,

] l

]z
511

1

2
Xz
2 . ~17!

The latter relationship demonstrates the weak reverse in
ence of the curvilinear trajectory on the spatial evolution
the wave beam propagating along the self-consistent tra
tory. This is connected with the proper choice of the (z,j)
coordinates. In the initial~rectangular! system of coordinates
(z,v) the interaction is much stronger, even within th
paraxial approximation.

To illustrate the effect of the centroid trajectory deviatio
from a straight line in an initially homogeneous medium
us consider the initial stage of self-effect proce
(]n/]t@n). Having assumed that the structure of the wa
beam is unperturbed (a5a05const), from Eq.~15! we find

S25a
P

a0
4 t. ~18!

The two consequent equations, within the approximati
yield

]2Xt8

]z2
5atXt8

P

a0
4 , ~19!

i.e., the effect of the trajectory deviation from the linear
determined by parameterb5P/a4.
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55 7443TRAJECTORY OF THE WAVE FIELD CENTROID
Note that Eq.~19! has the solutionXt50, which corre-
sponds to an invariable~stationary! trajectory. This is con-
nected with the absence~neglect! of wave-field perturbations
in the regime considered. A more accurate equation inclu
evidently the term proportional to]uCu2/]t as a source.

Further, it is natural to separate the cases of the~i! focus-
ing (a,0) and~ii ! defocusing (a.0) nonlinearities.

~i! For the defocusing nonlinearity (a51) the equation
for the trajectory leaving the coordinates origin is govern
by

X5E
0

t

A~ t !sinhAbtz dt, ~20!

whereA(t) is an arbitrary function of time. In the simples
caseA;a0 /Abt, having integrated Eq.~20! we find

X5
A0

bz
@cosh~Abt !z21#. ~21!

It is evident that in the nonlinear regime (b@1) the trajec-
tory deviates from the linear one exponentially:

XL5A0tz. ~22!

In the process of relaxation of the self-consistent distri
tion of the field and the medium refraction index the traje
tory of the centroid straightens up and becomes the sam
the one in the linear medium. The expressions for the s
metric and asymmetric parts of the perturbation of the m
dium refraction index derived from Eqs.~15! and ~16! were
used to describe the process of relaxation to steady-state
jectory

S2.
P

a4
, N0.XtS2 , ~23!

wherea(z) is determined by the stationary solution of Eq
~14! and ~18! and depends on the powerP. As a result, for
the trajectory in the plane (x,z) one can write the equation

]2X

]z2
5b

]X

]t
, ~24!

i.e., the relaxation process is governed by the diffusion eq
tion. Hence the time of stationary trajectory relaxation alo
the path of lengthL is

t;
PL2

a4
. ~25!

While estimating the wave-beam width along the path
its propagation within paraxial approximation

a25a01
PL2

a0
2 , ~26!

we finally obtain

t.
PL2

a0
21PL2/a0

2 , ~27!
es
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wherea0 is the wave-beam width atz50. One can see tha
the piece of the trajectory corresponding to the maxim
relaxation time lies in the nonlinear focal region. It is easy
make the estimate that, with respect to its order of mag
tude, this time is equal to the characteristic time of nonl
earity relaxation.

~ii ! In the case of the focusing nonlinearity (a521)
there is no instability, as seen from Eq.~20!, where the hy-
perbolic function is to be replaced by the trigonometric on
This conclusion is valid within the more accurate approa
which takes into account the fact that at times under con
eration the regime is essentially nonlinear and the distri
tion formed is of the type of the homogeneous compres
filament@4# @a;exp(2Pt/4)#. Similar calculations for such a
dynamic structure show that the amplitude of the centr
oscillations decreases faster than the beam width.

The above study demonstrates that one can propo
mechanism for nonstable motion of the wave-field centro
which is more adequate for this type of nonlinear respon
In the case of defocusing nonlinearity the distribution of t
refraction index is formed with a minimum at the syste
axis. The nonstable behavior of the central ray, to which
trajectory of the wave-beam centroid corresponds, is w
known for this case. When the beam deviates, the latter g
away from the system axis. On the other hand, the forma
of a perturbation of the refraction index with its maximum
the system axis in the case of focusing nonlinearity assist
stabilizing the behavior of the central ray.

III. NUMERICAL STUDY
OF NONSTATIONARY SELF-ACTION

The long-term evolution of the wave beam was cons
ered both from the basic equations and from the equation
the paraxial approximation taking into account the se
consistent variation of the central trajectory~15!–~17!. The
effect of a noticeable deviation from the straight line is d
termined by the parameterb5P/A4.1. First let us repre-
sent the results of the numerical consideration of the para
approximation equations~15!–~17!. In order to partially
compensate the rather strong self-defocusing of the radia
~as the pattern becomes stationary at the conditions u
consideration!, the wave beams focusing at the rear bound
of the considered range were set.

The results of numerical consideration are shown in F
1. The following parameters were chosen:P55, a5A2,
az50.2, X50, Xz50 at z50, s250, and N050.03 at
t50.

It is seen that the maximum deviation of the centroid t
jectory from the straight line is reached at timest<1, until
the width of the wave beam does not change noticeably
the process of stabilization of the stationary field distributi
the trajectory straightens up.

In the case of focusing nonlinearity (a521) numerical
calculations show that the motion of the centroid proves
have spatially periodic character. Its amplitude decrea
rather fast in time. Thus the regime of collapse is a sta
process relative to the aberration of the amplitude distri
tion and asymmetric bending of the phase front.

The paraxial optics approximation, as usual, descri
only basic features of the changes in the wave-beam pro
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7444 55A. G. LITVAK, V. A. MIRONOV, AND E. M. SHER
gation trajectory during its self-action in the media with i
ertia of the nonlinear response. The part of aberrations
in particular, third-order aberrations in the case of nons
tionary self-action considered may be significant, as s
from Eq.~9!. The numerical investigation of the initial set o
equations~1! and~3! was performed for the one-dimension
~in the transverse direction! Laplacian.

To retain the possibility of the wave collapse in the tw
dimensional case we considered the higher-order nonlin
ity. Namely, the following set of equations was considere

i
]C

]z
1

]2C

]x2
2nC50, ~28!

]n

]t
1n5auCu2q ~29!

atq52, for which the collapse occurs in the case of focus
nonlinearity (a,0).

Studies of the wave-field evolution were performed fo
Gaussian shaped beam at the nonlinear medium boun
(z50)

C5C0exp2
x2

2~11 izF!
1 ifx. ~30!

In the case of defocusing nonlinearity (a51) parameters
were chosen according to the initial data of numerical cal
lations within the paraxial optics approximation. The bea
were assumed to be focusing (zF51). In the case of focus
ing nonlinearity (a521) the beams were assumed to
collimated (zF50), which allowed making the time of sin
gularity formation somewhat longer. The coefficient of t
linear aberration of the phase front was taken to be equa
f50.03.

The results of computations show that aberrations cha
significantly the scenario of nonstationary self-action
compared to the paraxial optics approximation~Fig. 2!. In
the case of defocusing nonlinearity the stationary field dis
bution is finally realized, when the centroid of this fie
moves along a straight line. This fact was used to test
merical calculations. Aberrations lead to noticeably long
duration of the process of pattern stabilization. Several ch

FIG. 1. Dynamics of the wave-field centroid trajectory in t
case of defocusing nonlinearity within nonaberrational approxim
tion, for t50.1,0.15,0.6,1.0,1.5.
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acteristic stages may be singled out in the process dyna
~see Figs. 2 and 3!. First of all, it is seen that the time of th
first maximum deviation of the wave-beam centroid from t
initial trajectory ~straight line! becomes an order longer. A
this stage of nonstationary self-action the determinative p
is played, as seen from Fig. 3, by inhomogeneities of
medium refraction index perturbation, which are excited n
the front boundary of the nonlinear medium.

Having achieved the maximum deviation, the centroid t
jectory begins to oscillate within the region determined
this curve and a final state. After several oscillations,
number of which grows with an increase of the field amp
tude, a quasistationary trajectory is established.

At the last stage the trajectory straightens up rat
slowly. This is a consequency, and, evidently, a fine indi
tor of the smoothening of the field distribution in the proce
of stabilization of the steady state.

Similar calculations for the case of focusing nonlinear
(a521) were performed for a collimated wave bea
(zF50). The amplitudeC0 was chosen such as to provide
realization of the collapse dynamics atf50 @4#. First of all,
here it should be noted that the deviation of the centroid fr
the linear trajectory~Fig. 4! is much less than that of th
defocusing nonlinearity under similar conditions. In acco
dance with the above qualitative analysis and numerical c
sideration within the paraxial optics approximation, the t
jectory of the centroid motion proves to be an oscillati
function along the trajectory of the wave beam. The osci
tion period and amplitude decrease in time. The arising
errations lead to a significant difference of the field struct
from the initial Gaussian one. At timest.1 the asymmetry
in the field distribution also is clearly observed~see Fig. 5!.
A comparison of the field growth rate forf50.03 with the
results forf50 ~symmetric condition! shows that the col-
lapse is slower in the case under consideration. Unfo
nately, this interesting effect of the collapse rate decreas
at weak aberrations of symmetry in the initial field distrib
tion was studied only for times of the order of the times
nonlinear response relaxation. Then aberrations and fast
tial oscillations of the centroid lead to the destruction of t
integrals in the initial system of equations and the reliabil
of the computations noticeably reduces.

IV. HOSE-MODULATION „SNAKELIKE … INSTABILITY

A different peculiar instability associated with excitatio
of a plasma wave by a long pulse was described in@2#. We
show its mechanism based on the set of equations~1! and
~4!, taking no account of the plasma repulsion in the tra
verse direction due to pondermotive force. The correspo
ing equation for the motion of the wave-field centro
x̄(z,t)5*xuAu2dx dy has the form

]2x̄

]z2
5E uAu2

]n

]j
dj dyY E uAu2dx dy, ~31!

where the coordinatej5x2 x̄ describes the shift of the wav
beam relative to the straight linex50. Equation~4! for the
plasma wave potential in variablesj andt will be rewritten
as

-
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FIG. 2. Spatial distribution of the wave field
in the case of defocusing nonlinearity for~a!
t54 and~b! t520.
vi
a
di
a

ion

u

he

av

the
a

ions
ric

s a
ts

od.
and
li-
ntt22x̄tntj2xttnj1 x̄t
2njj1n5uCu2. ~32!

Hence two possible ways for the instability to occur are e
dent. The first one is connected with the generation of
asymmetric mode by a symmetric wave beam at the
placement of the centroid. Such an asymmetric mode is
eigenmode either in the initially inhomogeneous distribut
of the refraction index~e.g., in the plasma channel! or in the
self-consistent process of the formation of a similar distrib
tion as a result of the field effect.

Another possibility is associated with the excitation of t
asymmetric part of the potentialn in a Gaussian wave beam
uAu25(P/a2)exp@2(j21y2)/a2#. Let us representn as the
sum of the symmetric (S) and asymmetric (N) parts, the
equations for which, in the case of small perturbations, h
the form

Stt1S5uAu2, ~33!

Ntt1N52x̄tStt2 x̄ttSj . ~34!

Having integrated the equation for the symmetric part~33!
for the case of a rectangular shape,P(t)5A25const, we
find

S.uAu2~12cost!. ~35!
-
n
s-
n

-

e

When deducing this expression, it was assumed that
width of the beama actually stays the same along the plasm
wavelength. As a result, the self-consistent set of equat
for the centroid motion at the excitation of the asymmet
part of the potential takes on the form

Ntt1N5@2x̄tsint2~12cost!x̄tt#uAuj
2 , ~36!

]2x̄

]z2
5E uAu2

]N

]j
dj dyY E uAu2dx dy. ~37!

Now let us represent the solution of these equations a
sum of a slowly varying and quickly oscillating par
x̄5X1 x̃ exp(i t) andN5N1Ñ exp(i t). The amplitudesx̃
andÑ are smooth on the scale of the function plasma peri
Having separated the smooth and oscillating motions
averaging, in time we obtain the equations for slow amp
tudes

]2X

]z2
52 x̃E ~ uAuj

2!2dj dyY 2E uAu2dj dy, ~38!

]2x̃

]z2
5E uAu2

]Ñ

]j
dj dyY E uAu2dj dy, ~39!
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2i
]Ñ

]t
5uAuj

2x̃. ~40!

These equations have to be appended with an equation
the variation of the beam widtha(z,t) ~for example, within
the aberrationless approximation!. Specifically, one can use
self-similar-type structure@4,5#.

Considering further equations ata5a05const, the final
set of linear equations becomes

FIG. 3. Dynamics of the centroid trajectory under the conditio
corresponding to Fig. 2 for~a! t52,4,6 and~b! t516,18,20.

FIG. 4. Dynamics of the centroid trajectory in the case of foc
ing nonlinearity with initial conditionsC052.2, F50.03, and
ZF50 for t50.3,0.6,0.9.
for

]2X

]z2
52

Px̃

4a4
, ~41!

]2x̃

]z2
5q, ~42!

i
]q̃

]t
52

Px̃

4a4
, ~43!

where q5* uAu2(]Ñ/]j)dj dy/* uAu2dj dy. This yields a
simple correlation between slow displacement of the centr
and the amplitude of the oscillating motion:

X5 i
] x̃

]t
. ~44!

Let us perform the Laplace transform overz under zero
boundary conditions in Eqs.~42! and~43!, integrate Eq.~43!
over t, and perform the inverse Laplace transform. As
result, we obtain the expression

x̃5
q0
2p i E2 i`1d

i`1d 1

p2
expS i tP

8p2a4D 1pz dp. ~45!

Having calculated this integral by the saddle-po
method for (tP/4a4)z2@1, in the case corresponding to th
growing solution of Eqs.~42! and ~43! we obtain

X̃5
q0~A31 i !

A6pS Pt

4a4D
1/2exp@

3
4 ~A31 i !#S tP

4a4
z2D 1/3. ~46!

Having differentiated~44! over the fast growing exponen
we will find the expression for the slow part of the centro

X5
q0~ i2A3!z

8A6ptS Ptz2

4a2 D 1/6exp@
3
4 ~A31 i !#S Ptz2

4a4 D 1/3. ~47!

Thus, along with the growth of the centroid oscillation am
plitude at the plasma frequency, there is a slow displacem
of an averaged~over the plasma wavelength! position of the
centroid away from the system axis (r50). A detailed nu-
merical and analytical study of variations in the amplitu
oscillations during pulse self-modulation is described in@2#.
The slow motion of the centroid, as seen from Eq.~42!, must
manifest itself along sufficiently long trajectories (z@1);
therefore, it can hardly be seen from the results of@2#. The
period of nonlinear oscillations of the averaged centroid
T.(2p)3a4/Pz2 and by its order of magnitude it is equal t
the reverse growth rate of the perturbation growth in
system under consideration.

This study shows that in the regime of the nonstation
self-effect of the wave beam its centroid trajectory m

s

-
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FIG. 5. Spatial distribution of the wave field
in the case of focusing nonlinearity under th
conditions corresponding to Fig. 4 for~a! t50.6
and ~b! t50.9.
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change significantly. The value of the wave-beam centr
deviation from the trajectory in a linear medium is dete
mined by the parameter

P/a4.
E2

Ecr
2 a0

2k2
, ~48!

whereEcr is the characteristic field of the nonlinearity typ
under consideration andk is wave number.

At P/a4.1 the curvature~nonrectilinearity! of the wave-
beam trajectory is to be taken into account. This parame
as it is easily seen, contains the ratio of the power and crit
self-focusing power in the numerator and the square of
Rayleigh length measured by radiation wavelengths in
denominator. It is obvious that the exceeding of a criti
power determines the self-action dynamics~self-focusing,
self-defocusing, self-modulation, etc.! while the symmetry of
the problem remains undisturbed. In order to make appa
the considered effect of the wave-beam centroid devia
from a linear trajectory and stuctural changes due to the
citation of a nonsymmetric mode, the trajectories must
ceed the Rayleigh length. The effect of disturbing the fi
distribution symmetry is realized more easily in the case o
hose instability developing@2#. In fact, for the pulse radiation
one must replaceP @see Eqs.~46! and ~47!# by tP, where
t is the duration of electromagnetic radiation. Thus,
rather long pulses (t@1) it is obvious that the dynamics o
the centroid motion trajectory is determined by a wea
inequality (Pt/a4.1).
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This effect manifests itself in different ways in med
with defocusing and focusing nonlinearities. In the form
case the bending of the phase front makes the proces
stabilization of the stationary pattern longer and leads, in
nonstationary regime, to excitation of additional medium
homogeneities with ‘‘lifetimes’’ of the order of the nonlinea
relaxation time. In the medium with focusing nonlinearit
even in the symmetric case, the relaxation of the steady-s
distribution proves to be a rather long process and runs
several stages~spatiotemporal collapse, structure instabili
and excitation of inhomogeneities, gradual displacemen
inhomogeneities towards the rear boundary of the nonlin
medium, and only then formation of the stationary patter!.
Deceleration of the initial~collapse! stage in this case ma
introduce significant changes to the relaxation process.
evident that this will be assisted by structure instabili
which leads to an extension of the region occupied by
field, as well as by the dynamics of inhomogeneities.
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