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Trajectory of the wave field centroid

A. G. Litvak, V. A. Mironov, and E. M. Sher
Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod 603600, Russia
(Received 30 September 1996

The behavior of a wave-field centroid with spatial dynamics described by the diehen equation is
investigated analytically and numerically. The consideration was made for the case of media with inertia of the
nonlinear response. The peculiarities of the dynamics of wave-beam self-action in the media with focusing and
defocusing nonlinearities were analyzed. Within a paraxial optics approximation, the behavior of the centroid
trajectory was studied qualitatively. The numerical calculations of the peculiarities of a wave-beam self-action
dynamics under the conditions of nonrectilinear motion of the centroid were carried out.
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INTRODUCTION P

iE'FAL\I’—n\I’:O, 1)
The study of the dynamics of self-action for electromag-

netic waves and spatially localized pulses is usually rewheren is the perturbation of the medium refraction index

stricted to the consideration of axially symmetric field distri- caused by the effect of the field. This trajectory is described

butions. One major reason for such an approach iby the well-known equation

connected, in the long run, to the rectilinearity of the trajec- .

tory of the wave field centroid. However, only in the case of R 2 - 0>

the nonlinear Schidinger equation with a local nonlinearity 0z v VLndr/ J [¥|*dr,

can one provide a strict proof that nonlinearity does not

change the linear trajectory of the centrgilde first momen- = - > -

tum of the wave-field intensily Because of this, the basic R:J rll\lf|2dr/ J |W|%dr. 2

features of self-action dynamics are determined only by the ] ] ) ) o

behavior of the efficient pulse distribution widisecond mo- Usuqlly a special case of a medium W|th local nonlmea_nty is

mentum of the intensity{1]. One cannot make such a gen- considered. When=F(|¥|), the centroid of the wave field

eral conclusion even for media with a nonlocal dependencg’ moves along the straighft line determined by the condition
of the potential on the field amplitude in the Sctlimger at the boundary of the nonlinear mediua=0). One cannot
equation and all the more for media with inertia of the non-Make such a univalent conclusion for the case of a medium

; . with inertia of the nonlinear response whemlepends on the
linear response. Recent stud{&s3] on the self-action of a . Id distributi . i
spatially limited pulse in plasmas under excitation of a Wake]cle Istribution at previous time moments. :

P Moreover, one can show a possible mechanism of the

field demonstrated the unstable motion of the centroid, called,+.oid motion instability. If in the field-induced perturba-

“hose-modulgtlon |nstab|llty”[_2].. Qne can expect that th? tion of the refraction index an asymmetric mode can exist

unstable motpn of the centroid is _mherent for_ the dynam|csa|ong with the initial symmetric mod@ump wave, then the

of the self-action of wave beams in any medium with non-yighthand sideforce) of the motion equatiori2) proves to

linear relaxation. be nonzero. Acceleration of the centroid motion, in turn, can
This work presents analytical and numerical consideriead to amplification of the nonsymmetric part of the field.

ations of the behavior of the intensity center and dynamics oNote that this instability mechanism is possible in a steady-

the wave-field structure in the medium, with a nonlinearitystate medium with nonlocal nonlinearity too.

that is described by a relaxation equation. Peculiarities of the Let us consider the dynamics of the wave-beam centroid

processes considered have been studied for the cases of bo#havior in a nonstationary medium. For this, the following

focusing and defocusing nonlinearities. The approach devekxpression describing relaxation of the nonlinear response is

oped to determine the self-consistent trajectory of the cendsed:

troid and application of the averaging method allowed one to

find different peculiarities in the dynamics of hose- ’9_n+n: a| w2 3)

modulation instability too. at '

This simplest case of Kerr-type nonlinearity relaxation has a
number of advantages at the first stage of the construction of
a self-consistent scenario. It is local relative to all spatial
Let us consider the trajectory of the wave-beam centroidyariables and in the steady-state case it corresponds to cubic
the spatial evolution of which, as it propagates alangs  nonlinearity. It allows the consideration of both nonlineari-
governed by the Schdinger equation ties: the focusing ¢= —1) and defocusingd¢=1) types.

. PROBLEM FORMULATION: BASIC EQUATIONS
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Section IV describes also the centroid trajectory in a me- PR oN ) R
dium with a nonlinearity relaxation determined by the oscil- —=- f T|W|2d§/ f | |2dé, (12)
lator equation 9z 23
#n av oV
— =l @) i| —+R,— | +AV-sv=0. (13
0z I€

Then the set of equatiori$) and(4) describes the short laser

pulse self-action in plasma due to a wake-field excitation. Hence one can see a rather strong effect of the symmetric

part of the refraction index perturbation and weak reverse
influence of the asymmetric part of the refraction index on

Il. GENERALIZATION OF PARAXIAL OPTICS the wave-beam self-action. This is seen with extraordinary
APPROXIMATION clarity within the paraxial optics approximation. Having ap-
For a qualitative analysis of wave-beam variations it isProximated the symmetric part of the refraction index with a
convenient to use new variablest, and parabolaS=S,+ S,£2/2 and the asymmetric part with the
expressiorN=Ny¢ linear relative toé, it is easy to obtain,
E=r—R(zt). (5)  for Gaussian wave beam
. . . . P 2
As a result, the material equatid®) will be rewritten as ¥ exd — iz +idg?, (14)
a 2a
an . dn |2
E_Rt'a_g+n_a| | ©®  the following equation that generalizes equations of the

paraxial optics for the case of a non-rectilinear plane trajec-
and the equation for the centroid motion will stay the sameory:
since only the integration variable in E(R) was changed

S 2 ‘di ion i i Pa 1 ] P
(r—¢&). The Schrdinger equation in these variables, —z= ¥+Sza, &_?2+52:a¥; (15)
'({N s +A¥-n¥=0 7)
W= Rz —= —n¥=0, 9*X dNg
0z (9% EZ:NO’ 7+N02Xt82, (16)

by means of linear phase correction o o ) )
where within the approximation under cosideration we have,

V=", expiR, £, @  forlengthl,
is transformed as dl 1 7

172\ A .

—+R, 7) TAV-(N+R,)W=0, (9  The latter relationship demonstrates the weak reverse influ-
3 ence of the curvilinear trajectory on the spatial evolution of

where the subscrigt is omitted. the wave beam propagating along the self-consistent trajec-

This equation describes the evolution of the wave beam Q- This is connected with the proper choice of thzet]

it propagates along a slightly curved trajectory. The effecﬁvecoordinates. In the initialrectangular system of coordinates

. O L . . (z,v) the interaction is much stronger, even within the
potentialn+R,,- £ is symmetric within the paraxial optics garaxial approximation
approximation, as I _easny seen Whgn using the equatlc_)nsf " To illustrate the effect of the centroid trajectory deviation
the trajectory(2). Having neglected higher-order aberratlons,from a straight line in an initially homogeneous medium let
it is natural to assume tha®|? stays an even function of

L f . . us consider the initial stage of self-effect process
. Thg QeV|at|9n of t_he trajectory from the_ s.tra|g_ht line an_d(an/o?t>n). Having assumed that the structure of the wave
the arising of instability are connected, W|th|n.th|§ approxi- yoam is unperturbecai= a, = const), from Eq(15) we find
mation, with the asymmetric part of the refraction index per-
turbation. Therefore, we will representas a sum of sym- P
metric S and asymmetridN partsn=S+ N. Finally, within S,=a—t. (18
the approximation under consideration we obtain the follow- do
ing self-consistent system of equations, which is convenie

n1’he two consequent equations, within the approximation,

for analysis: yield
S . ON ,
E+S=a|‘lf|2+Rt~ﬁ—§, (10) PX{ tX,P (9
0z ¢ tag’
oN = 95 i.e., the effect of the traj deviation from the linear i
—+N=Rt- —, (11) l.e., the effect of the trajectory eviation from the linear Is

ot determined by parametgr= P/a*.
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Note that Eq.(19) has the solutionX;=0, which corre- wherea, is the wave-beam width &=0. One can see that
sponds to an invariabléstationary trajectory. This is con- the piece of the trajectory corresponding to the maximum
nected with the absencaeglec} of wave-field perturbations relaxation time lies in the nonlinear focal region. It is easy to
in the regime considered. A more accurate equation includesake the estimate that, with respect to its order of magni-

evidently the term proportional t6|¥|?/4t as a source. tude, this time is equal to the characteristic time of nonlin-
Further, it is natural to separate the cases of(thtocus-  earity relaxation.
ing («<<0) and(ii) defocusing ¢>0) nonlinearities. (i) In the case of the focusing nonlinearityx€ — 1)

(i) For the defocusing nonlinearitya=1) the equation there is no instability, as seen from EQ0), where the hy-
for the trajectory leaving the coordinates origin is governedperbolic function is to be replaced by the trigonometric one.
by This conclusion is valid within the more accurate approach,
which takes into account the fact that at times under consid-
eration the regime is essentially nonlinear and the distribu-
tion formed is of the type of the homogeneous compressed
filament[4] [a~exp(—Pt/4)]. Similar calculations for such a
whereA(t) is an arbitrary function of time. In the simplest dynamic structure show that the amplitude of the centroid
caseA~ ay/\/Bt, having integrated Eq20) we find oscillations decreases faster than the beam width.
The above study demonstrates that one can propose a
Ag mechanism for nonstable motion of the wave-field centroid,
X= E[cosf{ VBHz-1]. (21)  which is more adequate for this type of nonlinear response.
In the case of defocusing nonlinearity the distribution of the
It is evident that in the nonlinear regimg#$ 1) the trajec- refraction index is formed with a minimum at the system

X= f ;A(t)sinhﬁz dt, (20)

tory deviates from the linear one exponentially: axis. The nonstable behavior of the central ray, to which the
trajectory of the wave-beam centroid corresponds, is well
XL =Aptz. (22 known for this case. When the beam deviates, the latter goes

. . ~_away from the system axis. On the other hand, the formation
In the process of relaxation of the self-consistent distribuof a perturbation of the refraction index with its maximum at

tion of the field and the medium refraction index the trajec-the system axis in the case of focusing nonlinearity assists in
tory of the centroid straightens up and becomes the same ggabilizing the behavior of the central ray.

the one in the linear medium. The expressions for the sym-
metric and asymmetric parts of the perturbation of the me-

dium refraction index derived from Eqgl5) and (16) were . NUMERICAL STUDY
used to describe the process of relaxation to steady-state tra- OF NONSTATIONARY SELF-ACTION
Jectory The long-term evolution of the wave beam was consid-
= ered both from the basic equations and from the equations of
S=—, Ng=XS,, (23)  the paraxial approximation taking into account the self-
a consistent variation of the central trajectaqys)—(17). The

effect of a noticeable deviation from the straight line is de-
termined by the parametg@=P/A*>1. First let us repre-
sent the results of the numerical consideration of the paraxial
approximation equationg15)—(17). In order to partially
72X IX compensate the rather strong self-defocusing of the radiation
(24) (as the pattern becomes stationary at the conditions under
consideratiop the wave beams focusing at the rear boundary
of the considered range were set.
& The results of numerical consideration are shown in Fig.
9. The following parameters were chosdP=5, a=+/2,
a,=0.2, X=0, X,=0 at z=0, s,=0, and Ny=0.03 at

PLZ t=0.

T~ —7. (25 It is seen that the maximum deviation of the centroid tra-
a jectory from the straight line is reached at tintes1, until
While estimating the wave-beam width along the path oftﬂe width of t?e WS}{e b_eam fdﬁes not changf;.elgtét}ce%bly. In
its propagation within paraxial approximation the process of stabilization of the stationary field distribution

the trajectory straightens up.

wherea(z) is determined by the stationary solution of Egs.
(14) and (18) and depends on the powEr As a result, for
the trajectory in the planex(z) one can write the equation

92 P

i.e., the relaxation process is governed by the diffusion equ
tion. Hence the time of stationary trajectory relaxation alon
the path of length. is

2 In the case of focusing nonlinearityr& —1) numerical
5 PL - . :
a‘=ap+t —, (26)  calculations show that the motion of the centroid proves to
o have spatially periodic character. Its amplitude decreases

rather fast in time. Thus the regime of collapse is a stable
process relative to the aberration of the amplitude distribu-

pL2 tion and asymmetric bending of the phase front.
=, (27) The paraxial optics approximation, as usual, describes
ag+PLag only basic features of the changes in the wave-beam propa-

we finally obtain
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] acteristic stages may be singled out in the process dynamics
X3 (see Figs. 2 and)3First of all, it is seen that the time of the
0.00 . first maximum deviation of the wave-beam centroid from the
1 \ 10 initial trajectory (straight ling becomes an order longer. At
o this stage of nonstationary self-action the determinative part

is played, as seen from Fig. 3, by inhomogeneities of the
medium refraction index perturbation, which are excited near
the front boundary of the nonlinear medium.

Having achieved the maximum deviation, the centroid tra-
jectory begins to oscillate within the region determined by

I

0.1

—4.00

AW I B

015 this curve and a final state. After several oscillations, the
number of which grows with an increase of the field ampli-
B — s S tude, a quasistationary trajectory is established.
Q.00 0.50 1.00 1.50

At the last stage the trajectory straightens up rather
slowly. This is a consequency, and, evidently, a fine indica-

FIG. 1. Dynamics of the wave-field centroid trajectory in the tor of the smoothening of the field distribution in the process
case of defocusing nonlinearity within nonaberrational approximayf stabilization of the steady state.

tion, fort=0.1,0.15,0.6,1.0,1.5. Similar calculations for the case of focusing nonlinearity

tion traiectorv during it If-action in th dia with i (a=—1) were performed for a collimated wave beam
gat'lonf ;ﬁjec oryl/_ uring 1s se -a_?_rllon mt ? mbe |atyV| 'n'ﬁng:O). The amplitudel ; was chosen such as to provide a
ertia ot the noninear response. 1he part or aberrations andl, ., ation of the collapse dynamicsat=0 [4]. First of all,

in particular, third-order aberrations in the case of nonstahere it should be noted that the deviation of the centroid from

tionary self-action cons.ider.ed may pe signific.ap.t, as S€ehhe linear trajectory(Fig. 4) is much less than that of the
from Eq.(9). The numerical investigation of the initial set of defocusing nonlinearity under similar conditions. In accor-

equationd1) and(3) was performed for the one-dimensional dance with the above qualitative analysis and numerical con-

(m_lt_he trtaUS\t/ﬁrse d'r.eﬁ.'on‘iqﬁc'an' " in the tw sideration within the paraxial optics approximation, the tra-
0 retain the possibility of the wave collapse In the two- jectory of the centroid motion proves to be an oscillating

?m;nsmr?al tchas? :/lve gon5|dter?d theth|gher-order n(.)dnhn%. unction along the trajectory of the wave beam. The oscilla-
Ity. Namely, the Tollowing Set ol equations was considered. ;, , period and amplitude decrease in time. The arising ab-

IV 92p errations lead to a significant difference of the field structure
iE oz n¥=0, (28)  from the initial Gaussian one. At timags=1 the asymmetry
in the field distribution also is clearly observéskee Fig. 5.
n A comparison of the field growth rate fat=0.03 with the
—tn= a|W|% (290  results for¢=0 (symmetric conditioh shows that the col-

lapse is slower in the case under consideration. Unfortu-

atq=2, for which the collapse occurs in the case of focusingnately, this interesting effect of the collapse rate decreasing
nonline'arity @<0) at weak aberrations of symmetry in the initial field distribu-

Studies of the wave-field evolution were performed for glion was studied only for times of the order of the times of

Gaussian shaped beam at the nonlinear medium boundafgn“nefir response relaxatlo_n. Then aberrations and fast spa-
(z=0) | oscillations of the centroid lead to the destruction of the

integrals in the initial system of equations and the reliability
X2 of the computations noticeably reduces.

V="V ,exp— 5 (30

(L+izg) 9%
. . . IV. HOSE-MODULATION (SNAKELIKE ) INSTABILITY
In the case of defocusing nonlinearitye€£ 1) parameters
were chosen according to the initial data of numerical calcu- A different peculiar instability associated with excitation
lations within the paraxial optics approximation. The beamsof a plasma wave by a long pulse was describefRinWe
were assumed to be focusing:E1). In the case of focus- show its mechanism based on the set of equati@hsind
ing nonlinearity @=—1) the beams were assumed to be(4), taking no account of the plasma repulsion in the trans-
collimated @==0), which allowed making the time of sin- verse direction due to pondermotive force. The correspond-
gularity formation somewhat longer. The coefficient of theing equation for the motion of the wave-field centroid
linear aberration of the phase front was taken to be equal t&(z, 7) = [x|A|?dx dy has the form
¢=0.03.

The results of computations show that aberrations change prve an

significantly the scenario of nonstationary self-action as ﬁ:f |A|2a—§d§dy/ f |A|2dx dy,
compared to the paraxial optics approximatigiig. 2). In
the case of defocusing nonlinearity the stationary field distri- L
bution is finally realized, when the centroid of this field where the coordinaté=x—x describes the shift of the wave
moves along a straight line. This fact was used to test nubeam relative to the straight line=0. Equation(4) for the
merical calculations. Aberrations lead to noticeably longerplasma wave potential in variablésand = will be rewritten
duration of the process of pattern stabilization. Several charas

(31)
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FIG. 2. Spatial distribution of the wave field
in the case of defocusing nonlinearity fga)
t=4 and(b) t=20.
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nTT_ZX—TnTg_;TTngJ&gn&JFn:|q,|2_ (32  When deducing this expression, it was assumed that the
width of the beana actually stays the same along the plasma
Hence two possible ways for the instability to occur are evi-wavelength. As a result, the self-consistent set of equations
dent. The first one is connected with the generation of afor the centroid motion at the excitation of the asymmetric
asymmetric mode by a symmetric wave beam at the dispart of the potential takes on the form
placement of the centroid. Such an asymmetric mode is an

eigenmode either in the initially inhomogeneous distribution N,,+N=[2x,sinr— (1-cosr)x]|AlZ, (36)
of the refraction indexe.g., in the plasma chanpar in the

self-consistent process of the formation of a similar distribu- X , N )

tion as a result of the field effect. E=f Al a—§d§dy/ f |Al*dx dy. (37)

Another possibility is associated with the excitation of the

asymmetric part of the potentialin a Gaussian wave beam  nq\y |et us represent the solution of these equations as a
|A|?=(P/a?)exd —(£&+y?)/a’]. Let us represenh as the

¢ th ric® and tric ) s th sum of a slowly varying and quickly oscillating parts
sum of the symmetric§) and asymmetric parts, the —— . = _ ~ . —~
equations for which, in the case of small perturbations, havex X+xexp(r) andN=N-+Nexp(7). The amplitudes

the form andN are smooth on the scale of the function plasma period.

Having separated the smooth and oscillating motions and
S,.+S=|Al?, (33 averaging, in time we obtain the equations for slow ampli-
tudes
NTT+ N= 2X—TSTT_X_TTS§ . (34) 2
IX_ - 2\2 2

Having integrated the equation for the symmetric ga8) o2 _Xf (|A[2)*dédy Zf |A[“d¢dy, (38

for the case of a rectangular shap®(r)=A?=const, we

find ~

I°X N
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where q=[|A|%(JN/9&)dédy/[|A|2d¢dy. This yields a
simple correlation between slow displacement of the centroid

00 0.20 0.60 0.80 ’ o -
< ] z and the amplitude of the oscillating motion:
E X g 44
] =i—.
_ e (44)
1 16.
27.82
] Let us perform the Laplace transform overunder zero
s boundary conditions in Eq$42) and(43), integrate Eq(43)
® ) over 7, and perform the inverse Laplace transform. As a
. result, we obtain the expression
27.50 E X Y o 1 P
| T A SV PR X= o) e 2P igpzar| tPZAR (49

FIG. 3. Dynamics of the centroid trajectory under the conditions

corresponding to Fig. 2 fofa) t=2,4,6 and(b) t=16,18,20.

N
. — 2\4
2i o |AJEX.

(40)

Having calculated this integral by the saddle-point
method for ¢P/4a*)z?>>1, in the case corresponding to the
growing solution of Eqs(42) and(43) we obtain

Y= Jo(V/3 V3+i

P 1/3
R ML L

\/6_4a

These equations have to be appended with an equation for

the variation of the beam width(z, 7) (for example, within
the aberrationless approximatioSpecifically, one can use a Having differentiated44) over the fast growing exponent,
self-similar-type structur@4,5]. we will find the expression for the slow part of the centroid:

Considering further equations at=ay=const, the final

set of linear equations becomes

x
L

27.95

PR N N R N S T O N |

09

0.3

0.6

27.80 LI e e e
¢}

. 2\ 1/3
x= ! \/_))1/63)@: f+|>](PZ) . (@7)

86 (szz

Thus, along with the growth of the centroid oscillation am-
plitude at the plasma frequency, there is a slow displacement
of an averagedover the plasma wavelengtposition of the
centroid away from the system axis=0). A detailed nu-
merical and analytical study of variations in the amplitude
oscillations during pulse self-modulation is describeddh
The slow motion of the centroid, as seen from Et), must
manifest itself along sufficiently long trajectorieg>{1);
therefore, it can hardly be seen from the result$2jf The
period of nonlinear oscillations of the averaged centroid is
T=(27)%a* P2 and by its order of magnitude it is equal to
the reverse growth rate of the perturbation growth in the

FIG. 4. Dynamics of the centroid trajectory in the case of focus-System under consideration.

ing nonlinearity with initial conditions¥,=2.2, #=0.03, and

Zg=0 for t=0.3,0.6,0.9.

This study shows that in the regime of the nonstationary
self-effect of the wave beam its centroid trajectory may
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FIG. 5. Spatial distribution of the wave field
in the case of focusing nonlinearity under the
conditions corresponding to Fig. 4 f¢a) t=0.6

% and(b) t=0.9.
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change significantly. The value of the wave-beam centroid This effect manifests itself in different ways in media
deviation from the trajectory in a linear medium is deter-with defocusing and focusing nonlinearities. In the former
mined by the parameter case the bending of the phase front makes the process of
stabilization of the stationary pattern longer and leads, in the
4 E? nonstationary regime, to excitation of additional medium in-
Pla’= E2.a2k?’ (48) homogeneities with “lifetimes” of the order of the nonlinear
relaxation time. In the medium with focusing nonlinearity,
whereEy,, is the characteristic field of the nonlinearity type even in the symmetric case, the relaxation of the steady-state
under consideration andis wave number. distribution proves to be a rather long process and runs in
At P/a*>1 the curvaturdnonrectilinearity of the wave- ~ several stagegspatiotemporal collapse, structure instability
beam trajectory is to be taken into account. This paramete@nd excitation of inhomogeneities, gradual displacement of
as it is easily seen, contains the ratio of the power and criticdnhomogeneities towards the rear boundary of the nonlinear
self-focusing power in the numerator and the square of thé&edium, and only then formation of the stationary paftern
Rayleigh length measured by radiation wavelengths in th&e€celeration of the initialcollapse stage in this case may
denominator. It is obvious that the exceeding of a criticalintroduce significant changes to the relaxation process. It is
power determines the self-action dynam((mﬂf-focusing, evident that this will be assisted by structure instability,
self-defocusing, self-modulation, etevhile the symmetry of ~Which leads to an extension of the region occupied by the
the problem remains undisturbed. In order to make apparetield, as well as by the dynamics of inhomogeneities.
the considered effect of the wave-beam centroid deviation
fr.om. a linear trajectory and stuctural chan_ges dye to the ex- ACKNOWLEDGMENTS
citation of a nonsymmetric mode, the trajectories must ex-
ceed the Rayleigh length. The effect of disturbing the field The authors are grateful to E.I. Rakova and V. Filipov for
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